Free, Same Day Shipping (U.S. Only) | Our Breakaway Guarantee

Green tea protection of hypoxia/reoxygenation injury in cultured cardiac cells

Green tea protection of hypoxia/reoxygenation injury in cultured cardiac cells

Author: Alessandra Bordoni and Silvana Hrelia and Cristina Angeloni and Emanuele Giordano and Carlo Guarnieri and Claudio M Caldarera and Pier L Biagi

Antioxidant-rich diets exert a protective effect in diseases involving oxidative damage. Among dietary components, green tea is an excellent source of antioxidants. In this study, cultured neonatal rat cardiomyocytes were used to clarify the protective effect of a green tea extract on cell damage and lipid peroxidation induced by different periods of hypoxia followed by reoxigenation. Cultures of neonatal rat cardiomyocytes were exposed to 2–8 hr hypoxia, eventually followed by reoxygenation, in the absence or presence of α-tocopherol or green tea. LDH release and the production of conjugated diene lipids were measured, and appeared linearly related to the duration of hypoxia. During hypoxia, both LDH release and conjugated diene production were reduced by α-tocopherol and, in a dose dependent manner, by green tea, the 50 μg/ml being the most effective dose. Reoxygenation caused no further increase in LDH leakage, while it caused a significant increase in conjugate dienes, which absolute value was lower in antioxidant supplemented cells. Anyway, the ratio between conjugated diene production after hypoxia and after reoxygenation was similar in all groups, indicating that the severity of free radical-induced reoxygenation injury is proportional to the severity of previous hypoxic injury. Since hypoxic damage is reduced by α-tocopherol and green tea, our data suggest that any nutritional intervention to attenuate reoxygenation injury must be directed toward the attenuation of the hypoxic injury. Therefore, recommendations about a high dietary intake of antioxidants may be useful not only in the prevention, but also in the reduction of cardiac injury following ischemia.

 

 

Get the whole article here